Teknik Kimia

Kimia hijau

Dipublikasikan oleh Muhammad Farhan Fadhil pada 11 Juli 2022


Kimia hijau, juga disebut kimia berkelanjutan, adalah cabang ilmu kimia yang menganjurkan desain produk dan proses kimia untuk mengurangi atau menghilangkan penggunaan dan pembentukan senyawa-senyawa berbahaya.[1] Pada tahun 1990 Pollution Prevention Act (Undang-Undang Pencegahan Pencemaran 1990) telah disahkan di Amerika Serikat. Undang-undang tersebut bertujuan membantu mencegah terjadinya masalah pencemaran lingkungan akibat senyawa atau bahan kimia berbahaya.[2]

Sejarah
Ide kimia hijau pada awalnya dikembangkan sebagai tanggapan terhadap Undang-Undang Pencegahan Polusi tahun 1990, yang menyatakan bahwa kebijakan nasional Amerika Serikat harus membatasi atau mengurangi polusi dengan menggunakan desain proses yang lebih baik (termasuk produksi perubahan dalam biaya produk, proses pembuatan, penggunaan bahan mentah, dan daur ulang). Badan Lingkungan Amerika Serikat (EPA) yang dikenal sebagai badan pengatur kesehatan manusia dan lingkungan, berpindah dari kebijakan command and control policy dan mengimplementasikan ide Kimia Hijau. Pada tahun 1991, EPA telah meluncurkan program hibah penelitian yang mendorong perancangan ulang desain produk dan proses kimia yang ada untuk mengurangi dampak buruk terhadap kesehatan manusia dan lingkungan. EPA yang kemudian bekerja sama dengan US National Science Foundation (NSF) mendanai penelitian dasar tentang kimia hijau pada awal tahun 1990-an.  

Pengenalan Penghargaan Presiden Green Chemistry Challenge tahunan pada tahun 1996 berhasil menarik perhatian akademisi dan industri kimia hijau.[3] Program penghargaan dan teknologi tersebut sekarang menjadi landasan dalam kurikulum pendidikan kimia hijau.

Pada pertengahan hingga akhir tahun 1990-an terjadi peningkatan jumlah pertemuan internasional kimia hijau yang diadakan, seperti Konferensi Penelitian Gordon tentang Kimia Hijau, dan jaringan kimia hijau yang telah berkembang di Amerika Serikat, Britania raya, Spanyol, dan Italia.[4]

 

Prinsip

Pada tahun 1998, Paul Anastas bersama dengan John C. Warner mengembangkan prinsip yang dijadikan sebagai panduan dalam praktik kimia hijau.[5] Kedua belas prinsip tersebut membahas berbagai cara untuk mengurangi dampak dari produksi bahan-bahan kimia terhadap lingkungan dan kesehatan manusia, serta juga menunjukkan prioritas penelitian dalam pengembangan teknologi kimia hijau.

Dua belas prinsip kimia hijau yang dikembangkan oleh Paul Anastas dan John Warner, yaitu:[6]

  1. Pencegahan : Lebih baik melakukan pencegahan terhadap produksi limbah, daripada mengolah dan membersihkan limbah.
  2. Ekonomi atom : Melalui metode sintetis baru yang dirancang untuk memaksimalkan penggabungan semua bahan yang digunakan dalam proses ke dalam produk akhir, sehingga limbah yang dihasilkan lebih sedikit.
  3. Sintesis kimia yang tidak berbahaya : Metode sintetis harus menghindari penggunaan atau menghasilkan zat-zat yang beracun bagi manusia maupun lingkungan.
  4. Merancang bahan kimia yang lebih aman : Produk kimia yang dihasilkan harus dirancang untuk mempengaruhi fungsi yang diinginkan dan meminimalkan tingkat toksisitasnya.
  5. Pelarut dan alat bantu yang lebih aman : Sebisa mungkin menghindari atau meminimalkan penggunaan bahan pembantu (seperti zat pelarut, zat pemisah, dan sejenisnya), dan menggunakan zat pelarut atau bahan pembantu yang bersifat lebih aman yang tidak berbahaya bagi lingkungan apabila harus digunakan.
  6. Desain untuk efisiensi energi: Persyaratan energi dari proses kimiawi untuk meminimalkan dampak terhadap lingkungan dan ekonominya. Apabila memungkinkan menggunakan metode sintetis dilakukan pada suhu dan tekanan sekitar.
  7. Penggunaan bahan baku terbarukan : Bahan mentah atau bahan baku yang digunakan harus dapat diperbaharui (jika memungkinkan secara teknis dan ekonomis).
  8. Mengurangi derivatif atau turunan: Mengurangi turunan yang tidak perlu (penggunaan kelompok pemblokiran, perlindungan, modifikasi sementara proses fisik atau kimiawi) atau dihindari apabila memungkinkan, karena langkah-langkah tersebut memerlukan reagen tambahan dan dapat menghasilkan limbah,
  9. Katalisis: Penggunaan reagen katalitis (selektif mungkin) lebih baik daripada reagen stoikiometri.
  10. Desain untuk degradasi : Produk kimia yang dihasilkan harus dirancang sedemikian rupa sehingga pada akhir fungsinya, produk tersebut dapat terurai menjadi produk degradasi yang tidak berbahaya dan tidak bertahan lama di lingkungan.
  11. Analisis real-time untuk pencegahan polusi : Pengembangan metodologi analitik yang diperlukan untuk memungkinkan analisis real-time untuk pencegahan polusi, pemantauan dan pengendalian dalam proses sebelum pembentukan zat berbahaya.
  12. Penggunaan bahan kimia yang Lebih Aman Secara Inheren untuk pencegahan kecelakaan : Penggunaan zat dalam proses kimia apabila memungkinkan menggunakan zat kimia yang berpotensi rendah kecelakaan, termasuk ledakan, kebakaran, dan sejenisnya.

Legislasi

Uni Eropa

Pada tahun 2007 Uni Eropa menerapkan program Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).[7] Program tersebut mewajibakan bagi perusahaan untuk memberikan data yang menunjukkan bahwa produk yang mereka hasilkan aman dan tidak berbahaya.[8] Peraturan tersebut (EC No 1907/2006, tentang REACH) tidak hanya memastikan bahwa bahan kimia yang digunakan aman, tetapi juga melarang atau membatasi izin penggunaan zat atau bahan kimia tertentu.[9] Badan Bahan Kimia Eropa (ECHA) merupakan lembaga Uni Eropa yang mengelola aspek teknis dan administratif pelaksanaan regulasi dari REACH berusaha untuk menerapkan peraturan tersebut. Akan tetapi penegakannya tergantung pada negara anggota Uni Eropa.[10]

Amerika Serikat
Toxic Substances Control Act (TSCA) tahun 1976 merupakan undang-undang Amerika Serikat yang mengatur sebagian besar bahan-bahan kimia industri (tidak termasuk pestisida, makanan, dan obat-obatan).[11] Meneliti peran program regulasi tersebut dalam membentuk pengembangan kimia hijau di Amerika Serikat, analis telah mengungkapkan bahwa terdapat kelemahan struktural pada program TSCA. Misalnya pada laporan tahun 2006 kepada Badan Legislatif California yang menyimpulkan bahwa TSCA telah menghasilkan pasar bahan kimia domestik yang melakukan pengurangan terhadap sifat bahaya bahan kimia (termasuk fungsi, harga, dan juga kinerjanya).[12] Para ahli berpendapat bahwa kondisi pasar seperti itu merupakan penghalang utama bagi keberhasilan ilmiah, teknis, dan komersial kimia hijau di Amerika Serikat. Sehingga perubahan kebijakan mendasar diperlukan untuk memperbaiki kelemahan tersebut.

Undang-Undang Pencegahan Polusi (Pollution Prevention Act) disahkan pada tahun 1990.[2] Undang-undang tersebut bertujuan untuk mengurangi terjadinya pencemaran lingkungan akibat bahan kimia berbahaya.

Pada tahun 2008, negara bagian California menyetujui dua undang-undang yang bertujuan untuk mendorong program kimia hijau, yaitu dengan meluncurkan California Green Chemistry Initiative. Salah satu undang-undang ini mengharuskan California Department of Toxic Substances Control (DTSC) untuk mengembangkan peraturan baru agar memprioritaskan bahan kimia yang dapat menimbulkan masalah lingkungan atau kesehatan dan mempromosikan penggantian bahan kimia berbahaya tersebut dengan alternatif yang lebih aman. Peraturan yang dihasilkan tersebut mulai berlaku sejak tahun 2013, mengawali DTSC's Safer Consumer Products Program.[13]

Pendidikan

Banyak institusi yang menawarkan kursus dan gelar terkait bidang Kimia Hijau, diantaranya sebagai berikut:

  • Universitas Teknik Denmark dan beberapa univesitas di Amerika Serikat seperti Universitas Massachusetts-Boston,[14]  Michigan,[15] dan Oregon.[16]
  • Institut Teknologi Kimia yang berada di India yang menyediakan kursus untuk tingkat magister dan doktor dalam bidang Teknologi Hijau.[17]
  • Universitas Universitas Leicester, dan MRes Green Chemistry, Energy and the Environment di Imperial College London, Inggris.
  • Universitat Jaume I atau Universitas Navarra yang menyediakan program magister Kimia Hijau di Spanyol.[18]
  • Program Magister kimia hijau yang ada di Universitas Sains Terapan Zurich / ZHAW.

Selain itu, terdapat juga situs web yang berfokus dalam pembahasan kimia hijau, seperti Michigan Green Chemistry Clearinghouse.[12][19]

Tokoh
Paul T. Anastas dikenal sebagai "Bapak Kimia Hijau" karena penelitiannya yang inovatif mengenai desain, manufaktur, dan penggunaan bahan kimia dengan tingkat racun rendah dan aman bagi lingkungan.[5] Dia bersama dengan John C. Warner mengembangkan dua belas prinsip kimia hijau pada tahun 1991, dengan tujuan mengurangi dampak dari produksi bahan-bahan kimia terhadap lingkungan dan kesehatan manusia.[20]

Jurnal ilmiah kimia hijau

  • Kimia Hijau (RSC)
  • Green Chemistry Letters and Reviews (Open Access) ( Taylor & Francis )
  • ChemSusChem (Wiley)
  • Kimia & Teknik Berkelanjutan ACS (ACS)

Penghargaan

Beberapa perkumpulan ilmiah telah menciptakan penghargaan untuk mendorong penelitian dalam bidang kimia hijau, diantaranya :

  • Australia's Green Chemistry Challenge Awards yang diawasi oleh The Royal Australian Chemical Institute (RACI).[12]
  • Green Chemistry Challenge Awards yang disponsori oleh Badan Perlindungan Lingkungan Amerika Serikat (EPA).[21]
  • The Canadian Green Chemistry Medal yang disponsori GreenCentre Canada.[22]
  • The Green & Sustainable Chemistry Network yang secara resmi diluncurkan pada Maret tahun 2000 di Jepang.[23]
  • The Green Chemical Technology Awards oleh Crystal Faraday di Britania Raya.[24]

Sumber Artikel: id.wikipedia.org

Selengkapnya
Kimia hijau

Teknik Kimia

Teknik bioproses

Dipublikasikan oleh Admin pada 28 Februari 2022


Teknik bioproses atau teknik biokimia (Bahasa Inggrisbiochemical engineering) adalah cabang ilmu dari teknik kimia atau teknik biosistem yang berhubungan dengan perancangan dan konstruksi proses produksi yang melibatkan agen biologi. Agensia biologis dapat berupa mikroorganisme atau enzim yang dihasilkan oleh mikroorganisme.[1] Mikroorganisme yang digunakan pada umumnya berupa bakterikhamir, atau kapang.[1] Teknik bioproses biasanya diajarkan sebagai suplemen teknik kimia karena persamaan mendasar yang dimiliki keduanya.[2] Kesamaan ini meliputi ilmu dasar keduanya dan teknik penyelesaian masalah yang digunakan kedua jurusan. Aplikasi dari teknik bioproses dijumpai pada industri obat-obatan, bioteknologi, dan industri pengolahan air.[2]

Pengolahan limbah secara biologis merupakan salah satu aplikasi teknik bioproses.

Bioreaktor[sunting | sunting sumber]

Sebuah bioreaktor adalah suatu alat atau sistem yang mendukung aktivitas agensia biologis. Dengan kata lain, sebuah bioreaktor adalah tempat berlangsungnya proses kimia yang melibatkan mikroorganisme atau enzim yang dihasilkan oleh suatu mikroorganisme. Bioreaktor dikenal juga dengan nama fermentor.[3] Proses reaksi kimia yang berlangsung dapat bersifat aerobik ataupun anaerobik.[3] Sementara itu, agensia biologis yang digunakan dapat berada dalam keadaan tersuspensi atau terimobilisasi.[3] Contoh reaktor yang menggunakan agensia terimobilisasi adalah bioreaktor dengan unggun atau bioreaktor membran.[3]

Perancangan bioreaktor[sunting | sunting sumber]

Struktur suatu bioreaktor.

Perancangan bioreaktor adalah suatu pekerjaan teknik yang cukup kompleks. Pada keadaan optimum, mikroorganisme atau enzim dapat melakukan aktivitasnya dengan sangat baik. Keadaan yang memengaruhi kinerja agensia biologis terutama temperatur dan pH. Untuk bioreaktor dengan menggunakan mikroorganisme, kebutuhan untuk hidup seperti oksigennitrogenfosfat, dan mineral lainnya perlu diperhatikan. Pada bioreaktor yang agensia biologisnya berada dalam keadaan tersuspensi, sistem pengadukan perlu diperhatikan agar cairan di dalam bioreaktor tercampur merata (homogen). Seluruh parameter ini harus dimonitor dan dijaga agar kinerja agensia biologis tetap optimum.

Untuk bioreaktor skala laboratorium yang berukuran 1,5-2,5 L umumnya terbuat dari bahan kaca atau borosilikat, tetapi untuk skala industri, umunya digunakan bahan baja tahan karat (stainless steel) yang tahan karat.[4] Hal ini dimaksudkan untuk mengurangi kontaminasi senyawa metal pada saat fermentasi terjadi di dalamnya.[4] Bahan baja yang mengandung < 4% kromium disebut juga baja ringan, sedangkan bila kadar kromium di dalamnya >4% maka disebut stainless steel. Bioreaktor yang umum digunakan terbuat dari bahan baja 316 yang mengandung 18% kromium, 2-2,5% molibdenum, dan 10% nikel.[4] Bahan yang dipilih harus bersifat non-toksik dan tahan terhadap sterilisasi berulang-ulang menggunakan uap tekanan tinggi.[4] Untuk mencegah kontaminasi, bagian atas biorektor dapat ditambahkan dengan segel aseptis (aseptic seal) yang terbuat dari campuran metal-kaca atau metal-metal, seperti O-ring dan gasket.[5] Untuk meratakan media di dalam bioreaktor digunakan alat pengaduk yang disebut agitator atau impeler.[5] Sementara itu, untuk asupan udara dari luar ke dalam sistem biorektor digunakan sistem aerasi yang berupa sparger.[5] Untuk bioreaktor aerob, biasanya digunakan kombinasi sparger-agitator sehingga pertumbuhan mikrooganisme dapat berlangsung dengan baik.[5]

Pada bagian dalam bioreaktor, dipasang suatu sekat yang disebut baffle untuk mecegah vorteks dan meningkatkan efisiensi aerasi.[6] Baffle ini merupakan metal dengan ukuran 1/10 diameter bioreaktor dan menempel secara radial di dindingnya.[6] Bagian lain yang harus dimiliki oleh suatu bioreaktor adalah kondensor untuk mengeluarkan hasil kondensasi saat terjadi sterilisasi dan filter (0,2 μm) untuk menyaring udara yang masuk dan keluar tangki.[6] Untuk proses inokulasi kultur, pengambilan sampel, dan pemanenan, diperlukan adanya saluran khusus dan pengambilannya harus dilakukan dengan hati-hati dan aseptis agar tidak terjadi kontaminasi.[1] Untuk menjaga kondisi dalam bioreaktor agar tetap terkontrol, digunakan sensor pHsuhu, anti-buih, dan oksigen terlarut (DO).[1] Apabila kondisi di dalam sel mengalami perubahan, sensor akan memperingatkan dan harus dilakukan perlakuan tertentu untuk mempertahankan kondisi di dalam bioreaktor.[1] Misalkan terjadi perubahan pH maka harus ditambahkan larutan asam atau basa untuk menjaga kestabilan pH.[1] Penambahan zat ini dapat dilakukan secara manual namun juga dapat dilakukan secara otomatis menggunakan bantuan pompa peristaltik.[1] Selain asam dan basa, pompa peristaltik juga membantu penambahan anti-buih dan substrat ke dalam bioreaktor.[1]

Aplikasi bioreaktor[sunting | sunting sumber]

Awalnya bioreaktor hanya digunakan untuk memproduksi ragi, ekstrak khamircuka, dan alkohol.[2] Namun, alat ini telah digunakan secara luas untuk menghasilkan berbagai macam produk dari makhluk hidup seperti antibiotik, berbagai jenis enzimprotein sel tunggalasam amino, dan senyawa metabolit sekunder lainnya.[2] Selain itu, suatu senyawa juga dapat dimodifikasi dengan bantuan mikroorganisme sehingga menghasilkan senyawa hasil transformasi yang berguna bagi manusia.[2] Pengolahan limbah buangan industri ataupun rumah tangga pun sudah dapat menggunakan bioreaktor untuk memperoleh hasil buangan yang lebih ramah lingkungan.[7]

Sumber: id.wikipedia.org

 

Selengkapnya
Teknik bioproses

Teknik Kimia

Mahasiswa ITS Temukan Metode Efektif Ekstraksi Jintan Hitam

Dipublikasikan oleh Admin pada 28 Februari 2022


Kampus ITS, ITS News – Kebutuhan suplemen ekstrak jintan hitam sebagai penjaga imunitas di tengah pandemi ini semakin meningkat. Hal tersebut berhasil menginspirasi salah satu tim dari Institut Teknologi Sepuluh Nopember (ITS) untuk berinovasi dengan cara menemukan proses ekstraksi jintan hitam yang optimal, efisien, dan ramah lingkungan sekaligus dapat menjadi rujukan bagi industri produksi skala besar.

Tim yang menggagas ide ini diketuai oleh Elisabeth Ratnani Wahyu Hapsari. Ia bersama tiga rekannya yaitu Achmad Haris Sofani, Serli Dwi Rahayu, dan Arin Pashadiera Mellina melagakan gagasan idenya pada ajang Pekan Ilmiah Mahasiswa Nasional (PIMNAS) ke-34. Mahasiswa Departemen Teknik Kimia Industri ini akhirnya berhasil meraih medali perak pada kategori presentasi terbaik.

Perempuan yang akrab disapa Elisa ini mengatakan, inovasi tim diwujudkan dalam penelitian berjudul Optimasi Proses Pemisahan Minyak Biji Jintan Hitam secara Foodgrade dengan Metode Hydrodistillation melalui Variasi Treatment Pra-Ekstraksi. Penelitian ini menggunakan metode hydrodistillation melalui variasi perlakuan pra ekstraksi dalam pengambilan minyak biji jintan hitam. “Singkatnya, ini adalah gabungan proses ekstraksi (hydrodistillation) dan praekstraksi,” jelasnya.

Elisa menambahkan biasanya pada penelitian lain, cenderung hanya menerapkan salah satu macam perlakuan praekstraksi saja seperti microwave, ultrasonik, atau maserasi yang bagus untuk pemisahan bahan. “Tetapi belum ada penelitian yang pernah menggabungkan tiga perlakuan sekaligus,” terangnya.

Keutamaan dari penelitian ini yaitu limbah bekas percobaan terhitung zero waste karena ampas biji jintan dapat didaur ulang menjadi pupuk, khususnya untuk tanaman jintan hitam itu sendiri. Sementara untuk pelarut bekas percobaan bisa digunakan kembali menjadi aquades.

Proses Hidrodistilasi untuk mengekstraksi biji Jintan Hitam

Proses pra ekstraksi dan hydrodistillation ini dilakukan untuk mengoptimalkan hasil ekstrak yang didapat serta menghemat energi berlebihan dari proses praekstraksi. Adapun treatment praekstraksi adalah metode perlakuan bahan sebelum ekstraksi. Sedangkan hydrodistillation sendiri adalah metode ekstraksi standar berdasarkan Food and Drug Administration (FDA) yang harus bebas bahan kimia dan aman dikonsumsi.

Di sisi lain, proses tersebut juga bisa menghemat biaya apabila diterapkan di industri besar. Karena terjadi peningkatan permintaan menuntut industri untuk memproduksi lebih banyak. Maka dari itu mereka (industri, red) harus bisa mengontrol biaya dengan memperhatikan kualitas agar tetap optimal. “Sehingga penelitian ini dapat menjadi rujukan bagi industri produksi skala besar,” terang mahasiwa angkatan 2017 ini. 

Adapun runtutan proses untuk mendapatkan minyak dari biji jintan hitam ini adalah melakukan pra ekstraksi pada biji tersebut dengan aquades menggunakan beragam variabel waktu, yakni 10, 20, 30, 40, 50 hingga 60 menit. Selanjutnya dilakukan ekstraksi hidrodestilasi selama 9 jam.

Proses praekstraksi biji Jintan Hitam

Jintan hitam yang digunakan adalah jenis tanpa selaput dan harus dalam keadaan segar. Apabila ekstrak jintan hitam telah didapatkan, selanjutnya diproses dalam alat rotary vacuum evaporator. Hal tersebut bertujuan guna memisahkan pelarut dalam kandungan ekstrak jintan hitam hingga didapatkan hasil berupa minyak.

Hasil yang diperoleh kemudian akan melewati serangkaian analisa minyak seperti uji warna, densitas, Gas Chromatography and Mass Spectroscopy (GCMS), Scanning Electron Microscope (SEM), efisiensi energi konsumsi, dan lain-lain. “Selepas menganalisis dan melihat morfologinya, tahap terakhir adalah menghitung perbandingan bahan kering dan hasil minyak (yield),” imbuh mahasiswi kelahiran 18 April ini.

Tim yang dibimbing oleh Achmad Ferdiansyah P P ST MT ini melakukan riset sejak bulan Januari hingga September 2021. Selama waktu tersebut Elisa berujar jika penelitian ini sekaligus menjadi topik untuk tugas akhirnya. Apabila ada kesempatan untuk menempuh pendidikan magister, perempuan asal Blitar ini akan mengembangkan penelitian ini karena ingin mencoba dengan rentang waktu yang berbeda serta mencari akurasi efektifitas energi yang lebih baik.

Setelah membawa pulang prestasi, Elisa dan tim berharap riset ini kedepannya dapat dimanfaatkan dalam berbagai bidang, terutama untuk membantu tenaga medis dan masyarakat dalam penyediaan suplemen dan aman dikonsumsi. “Semoga keprihatinan kita terhadap kasus covid-19, juga dapat bermanfaat bagi industri dengan menggunakan energi yang ramah lingkungan,” tandasnya. (*)

Sumber: www.its.ac.id

 

Selengkapnya
Mahasiswa ITS Temukan Metode Efektif Ekstraksi Jintan Hitam

Teknik Kimia

Perancangan proses kimia

Dipublikasikan oleh Admin pada 28 Februari 2022


Perancangan proses kimia adalah kegiatan merancang proses untuk memperoleh perubahan fisis dan/atau kimiawi yang diharapkan. Perancangan proses adalah kegiatan yang penting dalam teknik kimia. Kegiatan ini dianggap sebagai puncak kegiatan teknik kimia, menyatukan semua aspek yang dipelajari bidang tersebut.

Perancangan proses dapat berupa perancangan fasilitas baru ataupun berupa modifikasi/ekspansi fasilitas yang sudah ada. Perancangan proses dimulai dari tahap konseptual dan berakhir pada tahap fabrikasi dan konstruksi hasil rancangan.

Perancangan proses berbeda dengan perancangan mesin. Pada perancangan mesin, dilakukan perancangan terhadap suatu unit operasi sementara perancangan proses melibatkan beberapa unit operasi.

Dokumentasi

Dokumentasi pada perancangan proses kimia berguna untuk mengkomunikasikan ide dan rencana kepada insinyur lain yang terlibat dalam proses perancangan, kepada agen luar, vendor peralatan, dan kontraktor. Untuk meningkatkan detail, dokumen perancangan proses meliputi:

  • Diagram alir blok: diagram sederhana berisikan persegi panjang dan garis menyatakan aliran massa dan energi.
  • Diagram alir proses (PFD's): Diagram yang lebih kompleks berisikan unit operasi utama dan garis aliran. Diagram jenis ini memuat data neraca massa, dan kadang-kadang juga neraca energi, beserta data laju alir, komposisi, dan tekanan serta temperatur aliran terkait.
  • Spesifikasi: Keterangan lengkap semua alat utama proses.

Pekerjaan desainer proses meliputi pula penulisan manual operasi awal proses (start-up), pengoperasian, dan akhir proses (shut-down).

Dokumentasi dijaga untuk keperluan lanjut seperti untuk acuan pengoperasian dan modifikasi proses lebih lanjut.

Konsiderasi perancangan[sunting | sunting sumber]

Perancangan proses memiliki tujuan dan batasan.

Tujuan 

Batasan meliputi:

Faktor lain yang juga dapat menjadi bahan pertimbangan menyangkut:

  • Kehandalan
  • Fleksibilitas
  • Kemungkinan terjadinya perubahan terhadap bahan baku dan produk (ketersediaan, harga, ataupun tuntutan pasar).

Sumber informasi perancangan

Desainer pada umumnya tidak memulai perancangan dari nol, khususnya bila proyek yang ditangani cukup kompleks. Biasanya insinyur perancang memiliki data pilot plant atau data pabrik yang telah beroperasi penuh. Sumber data lain dapat berupa lisensor proses, hasil penelitian laboratorium,data ilmiah, dan masukan dari vendor.

Bantuan komputer

Kemajuan teknologi perangkat lunak telah membantu dalam proses perhitungan yang dibutuhkan dalam perancangan proses, ataupun membantu pensimulasian proses. hasil simulasi dapat mengidentifikasi kelemahan dalam suatu desain sehingga memungkinkan desainer memilih alternatif yang terbaik.

Namun, insinyur perencana tetap mengandalkan heuristik, intuisi dan pengalaman dalam merencanakan proses. Kreativitas juga diperlukan dalam merancang suatu proses yang kompleks.

Sumber: id.wikipedia.org

Selengkapnya
Perancangan proses kimia

Teknik Kimia

Teknik kimia

Dipublikasikan oleh Admin pada 28 Februari 2022


Teknik kimia (Inggrischemical engineering) adalah cabang ilmu teknik atau rekayasa yang mempelajari pemrosesan bahan mentah menjadi barang yang lebih berguna, dapat berupa barang jadi ataupun barang setengah jadi. Ilmu teknik kimia diaplikasikan terutama dalam perancangan dan pemeliharaan proses-proses kimia, baik dalam skala kecil maupun dalam skala besar seperti pabrik. Insinyur teknik kimia yang pekerjaannya bertanggung jawab terhadap perancangan dan perawatan proses kimia pada skala pabrik dikenal dengan sebutan "insinyur proses" (process engineer). Selain itu, insinyur teknik kimia modern juga melakukan penelitian yang bertujuan untuk menemukan material-material dan teknik-teknik baru, yang kadang-kadang juga berhubungan dengan berbagai disiplin ilmu lainnya, seperti nanoteknologisel bahan bakar, dan teknik biomedis.[1] Pada teknik kimia, ada 2 subgrup besar yang di antaranya: 1) mendesain, membangun, dan mengoperasikan pembangkit/pabrik dan proses-proses kimia di dalamnya dan 2) mengembangkan substansi baru atau pengembangan dari substansi sebelumnya pada berbagai produk yang rentangnya mulai dari makanan dan minuman sampai kosmetik, pembersih, dan obat-obatan.

Proses mendesain, membangun, dan mengoperasikan kilang distilasi

Sejarah

George E. Davis

Teknik kimia pertama kali muncul pada pengembangan unit operasi, salah satu konsep dasar dari teknik kimia modern sekarang. Sebagian besar penulis setuju bahwa Davis menemukan unit operasi namun tidak dikembangkan secara pesat. Ia memberikan serangkaian kuliah tentang unit operasi di Technical School Manchester (Universitas Manchester hari ini) pada tahun 1887, Ia dianggap sebagai salah satu yang paling awal mengajarkan teknik kimia. Tiga tahun sebelum kuliah Davis, Henry Edward Armstrong mengajarkan program teknik kimia di City and Guilds of London Institute, tetapi Armstrong "gagal" karena lulusannya tidak menarik bagi pengusaha. Pengusaha pada waktu itu lebih suka menyewa ahli kimia dan insinyur mekanik. Program teknik kimia yang ditawarkan oleh Massachusetts Institute of Technology (MIT) di Amerika Serikat, Universitas Owen di Manchester, Inggris dan University College London juga mengalami kegagalan dengan alasan yang sama.

Mulai tahun 1888, Lewis M. Norton mengajar di MIT kursus teknik kimia pertama di Amerika Serikat. Tentu saja Norton adalah kontemporer dan pada dasarnya apa yang diajarkannya sama dengan kursus Armstrong. Kedua kursus, bagaimanapun, hanya menggabungkan pelajaran kimia dan mesin. "Para praktisi mengalami kesulitan meyakinkan pengusaha bahwa mereka adalah insinyur dan juga ahli kimia, bahwa mereka tidak hanya ahli kimia." Kursus unit operasi diperkenalkan William Hultz Walker pada tahun 1905. Pada awal tahun 1920-an, unit operasi menjadi aspek penting dari teknik kimia di MIT dan universitas lain di AS, serta di Imperial College London. The American Institute of Chemical Engineers (AIChE), yang didirikan pada tahun 1908, memainkan peran kunci dalam membuat teknik kimia dianggap sebagai ilmu mandiri, dan bahwa unit operasi menjadi salah satu pusat penting di dalam teknik kimia. Misalnya, mendefinisikan teknik kimia menjadi "ilmu teknik kimia itu sendiri, pada dasarnya ... unit operasi" dalam laporan 1922, telah menerbitkan daftar lembaga akademik yang menawarkan program studi teknik kimia "yang benar". Sementara itu, Inggris pun mempromosikan teknik kimia sebagai ilmu yang berbeda di Eropa dan mulai membentuk Lembaga Insinyur Teknik Kimia (IChemE) pada tahun 1922.

Konsep Baru dan Inovasi

Pada tahun 1940-an, menjadi jelas bahwa unit operasi saja tidak cukup dalam merancang reaktor kimia. Sementara dominasi unit operasi dalam kursus teknik kimia di Inggris dan Amerika Serikat terus berlanjut sampai tahun 1960-an, fenomena perpindahan mulai mengalami fokus yang lebih besar. Seiring dengan konsep baru lainnya, sistem proses seperti rekayasa, "paradigma kedua teknik kimia" mulai didefinisikan. Fenomena perpindahan memberikan pendekatan analitis untuk teknik kimia, sementara sistem proses difokuskan pada unsur-unsur sintetis, seperti sistem kontrol dan desain proses. Perkembangan teknik kimia sebelum dan sesudah Perang Dunia II dipicu terutama oleh industri petrokimia, tetapi kemajuan dalam bidang lain juga dibuat. Kemajuan dalam rekayasa biokimia terjadi pada tahun 1940-an, misalnya, menemukan aplikasi dalam industri farmasi, dan memungkinkan untuk produksi massal dari berbagai antibiotik, termasuk penisilin dan streptomisin. Sementara itu, kemajuan dalam ilmu polimer dimulai pada tahun 1950-an yang akhirnya menuju "era plastik".

Kemajuan Terkini

Kemajuan dalam ilmu komputer memungkinkan aplikasi untuk merancang dan mengelola pabrik, menyederhanakan perhitungan dan gambar-gambar yang sebelumnya harus dilakukan secara manual. Penyelesaian Proyek Genom Manusia juga dilihat sebagai perkembangan utama, tidak hanya teknik kimia tetapi juga rekayasa genetika dan genomik juga.

Contoh

Berikut ini adalah contoh yang mengilustrasikan peran seorang insinyur teknik kimia di pabrik:

“Perbedaan antara teknik kimia dan kimia dapat diilustrasikan dengan mengambil contoh proses produksi jus jeruk. Seorang ahli kimia akan berusaha untuk meneliti metode-metode ekstraksi jus jeruk. Metode yang paling sederhana yang mungkin ditemukan adalah memotong jeruk menjadi dua bagian dan kemudian memerasnya. Metode yang lebih rumit adalah dengan cara mengupas kulit jeruk dan kemudian menghancurkan jeruk untuk memperoleh jusnya.

Sebuah perusahaan kemudian menginstruksikan seorang insinyur teknik kimia untuk merancang pabrik penghasil jus jeruk dengan kapasitas produksi beberapa ribu ton jus per tahun. Insinyur tersebut akan menganalisis proses-proses produksi yang mungkin dan kemudian mengevaluasi keekonomisan setiap proses yang mungkin. Walaupun metode produksi jus dengan cara memeras sangat sederhana, proses ini tidak ekonomis karena memerlukan ribuan orang untuk mencapai target produksi. Oleh karena itu, metode lain akan dipilih (mungkin metode pengupasan dan penghancuran). Dari contoh ini, dapat dilihat bahwa proses produksi yang paling sederhana dalam skala laboratorium belum tentu merupakan metode paling ekonomis pada suatu pabrik."

Penjelasan Umum

Teknik kimia selalu menitikberatkan pekerjaannya untuk menghasilkan proses yang ekonomis. Untuk mencapai tujuan ini, seorang insinyur teknik kimia dapat menyederhanakan atau memperumit aliran proses produksi untuk memperoleh proses yang ekonomis. Selain melalui perancangan aliran proses produksi, seorang insinyur teknik kimia juga dapat menghasilkan proses yang ekonomis dengan merancang kondisi operasi. Beberapa reaksi kimia memiliki laju reaksi yang lebih tinggi pada tekanan atau temperatur operasi yang lebih tinggi. Proses produksi amonia adalah contoh dari pemanfaatan tekanan tinggi. Agar laju pembentukan amonia cepat, reaksi dilangsungkan dalam suatu reaktor bertekanan tinggi.

Proses-proses kimia berlangsung dalam peralatan proses. Peralatan proses umumnya merupakan satu unit operasi. Unit-unit operasi kemudian dirangkaikan untuk melakukan berbagai kebutuhan dari sintesis kimia ataupun dari proses pemisahan. Pada beberapa unit operasi, peristiwa sintesis kimia dan proses pemisahan berlangsung secara bersamaan. Penggabungan dari keduanya ini bisa dilihat dari proses distilasi reaktif.

Ilmu-ilmu yang menjadi dasar dalam teknik kimia, antara lain adalah:

Terdapat pula ilmu-ilmu pendukung yang teknik kimia, antara lain:

Selain ilmu dasar dan ilmu pendukung, terdapat pula kemampuan-kemampuan dan pengetahuan-pengetahuan aplikatif yang perlu dikuasai oleh seorang insinyur teknik kimia, antara lain:

Teknik Kimia Modern

Pada masa sekarang ini, teknik kimia terlibat dalam proses pengembangan dan proses produksi produk yang sangat beragam. Produk-produk ini meliputi material berunjuk kerja tinggi untuk keperluan antariksaotomotifbiomediselektronik, lingkungan, dan militer. Contoh produk yang dihasilkan adalah serat yang sangat kuat, bahan tekstilpelekat, material komposit untuk kendaraan, material yang aman digunakan untuk implan, dan obat-obatan.

Bidang terkait

Ruang lingkup teknik kimia sangatlah luas, melingkupi bidang bioteknologinanoteknologi, hingga pemrosesan mineral.

Sumber: id.wikipedia.org

 

Selengkapnya
Teknik kimia
page 1 of 1