Optimasi Stokastik

Dipublikasikan oleh Siti Nur Rahmawati

22 Agustus 2022, 13.03

control.ee.ethz.ch

Metode optimasi stokastik (SO) adalah metode optimasi yang menghasilkan dan menggunakan variabel acak. Untuk masalah stokastik, variabel acak muncul dalam rumusan masalah optimasi itu sendiri, yang melibatkan fungsi tujuan acak atau kendala acak. Metode optimasi stokastik juga mencakup metode dengan iterasi acak. Beberapa metode optimasi stokastik menggunakan iterasi acak untuk memecahkan masalah stokastik, menggabungkan kedua arti dari optimasi stokastik. Metode optimasi stokastik menggeneralisasi metode deterministik untuk masalah deterministik.

Metode untuk fungsi stokastik

Data masukan sebagian acak muncul di bidang-bidang seperti estimasi dan kontrol waktu nyata, optimasi berbasis simulasi di mana simulasi Monte Carlo dijalankan sebagai perkiraan sistem aktual, dan masalah di mana ada kesalahan eksperimental (acak) dalam pengukuran kriteria. Dalam kasus seperti itu, pengetahuan bahwa nilai fungsi terkontaminasi oleh "noise" acak mengarah secara alami ke algoritme yang menggunakan alat inferensi statistik untuk memperkirakan nilai "sebenarnya" fungsi dan/atau membuat keputusan optimal secara statistik tentang langkah selanjutnya. Metode kelas ini meliputi:

  • pendekatan stokastik (SA), oleh Robbins dan Monro (1951)
  • penurunan gradien stokastik
  • perbedaan hingga SA oleh Kiefer dan Wolfowitz (1952)
  • gangguan simultan SA oleh Spall (1992)
  • optimasi skenario

Metode pencarian acak

Di sisi lain, bahkan ketika kumpulan data terdiri dari pengukuran yang tepat, beberapa metode memasukkan keacakan ke dalam proses pencarian untuk mempercepat kemajuan. Keacakan tersebut juga dapat membuat metode kurang sensitif terhadap kesalahan pemodelan. Selanjutnya, keacakan yang disuntikkan dapat memungkinkan metode untuk lolos dari optimum lokal dan akhirnya mendekati optimum global. Memang, prinsip pengacakan ini dikenal sebagai cara yang sederhana dan efektif untuk mendapatkan algoritme dengan kinerja bagus yang hampir pasti secara seragam di banyak kumpulan data, untuk berbagai macam masalah. Metode optimasi stokastik semacam ini meliputi:

  • simulasi anil oleh S. Kirkpatrick, C. D. Gelatt dan M. P. Vecchi (1983)
  • anil kuantum
  • Kolektif Probabilitas oleh D.H. Wolpert, S.R. Bieniawski dan D.G. Rajnarayan (2011)
  • optimasi pencarian reaktif (RSO) oleh Roberto Battiti, G. Tecchiolli (1994), baru-baru ini diulas dalam buku referensi
  • metode cross-entropy oleh Rubinstein dan Kroese (2004)
  • pencarian acak oleh Anatoly Zhigljavsky (1991)
  • Pencarian informasi
  • terowongan stokastik
  • tempering paralel alias pertukaran replika
  • pendakian bukit stokastik
  • algoritma kawanan
  • algoritma evolusioner
  1. algoritma genetika oleh Holland (1975)
  2. strategi evolusi
  • algoritma optimasi & modifikasi objek kaskade (2016)

Sebaliknya, beberapa penulis berpendapat bahwa pengacakan hanya dapat meningkatkan algoritma deterministik jika algoritma deterministik dirancang dengan buruk sejak awal. Fred W. Glover[20] berpendapat bahwa ketergantungan pada elemen acak dapat mencegah pengembangan komponen deterministik yang lebih cerdas dan lebih baik. Cara di mana hasil algoritma optimasi stokastik biasanya disajikan (misalnya, hanya menyajikan rata-rata, atau bahkan yang terbaik, dari N berjalan tanpa menyebutkan spread), juga dapat menghasilkan bias positif terhadap keacakan.

 

Sumber Artikel: en.wikipedia.org