Facilities Engineering and Energy Management
Dipublikasikan oleh Muhammad Farhan Fadhil pada 03 Maret 2022
Energi berkelanjutan adalah penyediaan energi yang berkelanjutan yang memenuhi kebutuhan saat ini tanpa mengorbankan kemampuan generasi mendatang untuk memenuhi kebutuhan mereka.
Teknologi yang mempromosikan energi berkelanjutan yang termasuk sumber energi terbarukan, seperti pembangkit listrik tenaga air, energi surya, energi angin, tenaga ombak, energi panas bumi, fotosintesis buatan, dan tenaga pasang surut, dan juga teknologi yang dirancang untuk meningkatkan efisiensi energi.
Evolusi Sistem Energi
Berdasarkan pada sudut pandang masyarakat, energi bukanlah energi itu sendiri. Sistem energi dibuat untuk mempertemukan antara permintaan pelayanan seperti memasak, penerangan, iklim dalam ruangan yang nyaman, transportasi, informasi, dan barang konsumsi.
Sebuah sistem energi terdiri dari sektor penyuplai energi dan teknologi penggunaan akhir untuk menyediakan jasa atau pelayanan energi. Sektor penyuplai energi termasuk ke dalam proses kompleks untuk mengekstraksi sumber daya energi (seperti batu bara, dan minyak), untuk mengonversinya menjadi bentuk energi yang lebih dibutuhkan dan sesuai.
Energi Terbarukan
Sumber Artikel: id.wikipedia.org
Facilities Engineering and Energy Management
Dipublikasikan oleh Muhammad Farhan Fadhil pada 03 Maret 2022
Efisiensi Energi adalah usaha yang dilakukan dengan tujuan untuk mengurangi jumlah energi yang dibutuhkan, dalam menggunakan sebuah peralatan atau bahkan sistem yang berhubungan dengan energi. Contohnya, isolasi rumah memungkinkan bangunan rumah tersebut untuk dapat menggunakan energi pemanas dan pendingin yang lebih sedikit, untuk mencapai dan mempertahankan suhu yang nyaman. Memasang lampu pendar (lampu neon), lampu LED atau skylight yang alami dapat mengurangi jumlah energi yang diperlukan untuk mencapai tingkat pencahayaan yang sama dibandingkan dengan menggunakan lampu pijar. Perbaikan dalam efisiensi energi umumnya dicapai dengan mengadopsi teknologi atau proses produksi yang lebih efisien atau dengan metode aplikasi yang diterima secara umum untuk mengurangi pengeluaran energi.
Ada banyak motivasi untuk meningkatkan efisiensi energi. Mengurangi penggunaan energi, mengurangi biaya energi dan dapat menghasilkan penghematan secara finansial kepada konsumen jika penghematan energi tersebut tidak melebihi biaya tambahan untuk penerapan aplikasi teknologi hemat energi. Mengurangi penggunaan energi juga dipandang sebagai solusi untuk mengurangi masalah emisi gas rumah kaca. Menurut Badan Energi Internasional, peningkatan efisiensi energi pada bangunan, proses industri dan transportasi dapat mengurangi sepertiga kebutuhan energi di dunia pada tahun 2050, dan dapat membantu mengontrol emisi gas rumah kaca secara global.
Efisiensi energi dan energi terbarukan disebut juga sebaga pilar kembar dari kebijakan energi yang berkelanjutan dan merupakan prioritas utama dalam hierarki energi yang berkelanjutan. Di banyak negara, efisiensi energi juga terlihat memiliki manfaat untuk keamanan nasional karena dapat digunakan untuk mengurangi tingkat impor energi dari negara-negara asing dan dapat memperlambat tingkat di mana sumber daya energi dalam negeri akan habis.
Peralatan
Peralatan Modern, seperti, freezer, oven, kompor, mesin pencuci piring, dan mesin cuci dan pengering pakaian, secara signifikan menggunakan energi yang lebih sedikit dibandingkan peralatan yang lebih tua. Memasang jemuran akan secara signifikan mengurangi konsumsi energi sebagai pengering. Saat ini lemari es yang menggunakan efisiensi energi, misalnya, menggunakan 40 persen energi lebih sedikit daripada model konvensional pada tahun 2001. Berikut ini, jika semua rumah tangga di Eropa mengganti semua peralatan yang sudah lebih dari sepuluh tahun dengan yang baru, 20 miliar kWh listrik akan diselamatkan setiap tahunnya, oleh karena hal tersebut dapat mengurangi emisi CO2 sampai hampir 18 miliar kg. Di AS, hal yang sama dengan hal tersebut akan menjadi 17 miliar kWh listrik dan 27,000,000,000 lb (1.2×1010 kg) CO2. Menurut sebuah studi pada tahun 2009 dari McKinsey & Company penggantian peralatan tua adalah salah satu yang paling langkah-langkah global yang paling efisien untuk mengurangi emisi gas rumah kaca. Manajemen sistem daya yang modern juga mengurangi penggunaan energi melalui peralatan yang sedang tidak bekerja dengan mematikan mereka atau menempatkan mereka ke dalam mode energi rendah setelah waktu tertentu. Banyak negara-negara mengidentifikasi peralatan yang hemat energi menggunakan pelabelan energi input.
Dampak dari efisiensi energi pada permintaan puncak tergantung pada ketika alat digunakan. Misalnya, pendingin udara menggunakan lebih banyak energi selama siang hari ketika panas. Oleh karena itu, hemat energi ac akan memiliki dampak yang lebih besar pada permintaan puncak dibandingkan permintaan rendah. Hemat energi mesin cuci piring, di sisi lain, menggunakan lebih banyak energi saat malam hari ketika orang-orang mencuci piring mereka. Alat ini mungkin memiliki sedikit atau tidak ada dampak pada permintaan puncak.
Desain bangunan
Bangunan-bangunan adalah bagian penting untuk perbaikan efisiensi energi di seluruh dunia karena peran mereka sebagai konsumen utama energi. Namun, pertanyaan tentang penggunaan energi dalam bangunan, tidak langsung seperti kondisi ruangan yang dapat dicapai dengan penggunaan energi yang bervariasi. Langkah-langkah untuk menjaga bangunan-bangunan tetap nyaman, penerangan, pemanasan, pendinginan dan ventilasi, semua mengkonsumsi energi. Biasanya tingkat efisiensi energi di bangunan diukur dengan membagi energi yang dikonsumsi dengan luas lantai bangunan yang mengakibatkan konsumsi energi spesifik (SEC).
Namun, masalah ini lebih kompleks karena bahan-bahan bangunan yang memiliki wujud energi itu sendiri di dalamnya. Di sisi lain, energi yang dapat pulih dari bahan ketika bangunan tersebut dibongkar dengan menggunakan kembali bahan-bahan atau membakar mereka untuk energi. Terlebih lagi, ketika bangunan yang digunakan, kondisi dalam ruangan dapat bervariasi sehingga lebih tinggi dan menurunkan kualitas lingkungan dalam ruangan. Akhirnya, efisiensi secara keseluruhan dipengaruhi oleh penggunaan gedung: apakah bangunan yang ditempati sebagian besar waktu dan ruang yang dimiliki digunakan secara efisien — atau bangunan tersebut sebagian besar kosong? Bahkan telah disarankan bahwa untuk perhitungan efisiensi energi yang lebih lengkap, SEC harus diubah untuk mencakup faktor-faktor ini:
Dengan demikian pendekatan yang seimbang untuk efisiensi energi di gedung-gedung harus lebih komprehensif daripada hanya mencoba untuk meminimalkan energi yang dikonsumsi. Hal-hal seperti kualitas lingkungan indoor dan efisiensi penggunaan ruang harus diperhitungkan. Dengan demikian langkah-langkah yang digunakan untuk meningkatkan efisiensi energi dapat mengambil banyak bentuk yang berbeda. Sering mereka memasukkan langkah-langkah pasif yang secara inheren mengurangi kebutuhan untuk menggunakan energi, seperti insulasi yang lebih baik. Banyak hal yang dapat dilakukan untuk meningkatkan kondisi ruangan serta mengurangi penggunaan energi, seperti peningkatan penggunaan cahaya alami.
Lokasi bangunan dan lingkungan memiliki peran penting dalam mengatur suhu dan pencahayaan. Misalnya, pohon-pohon, lansekap, dan bukit-bukit dapat memberikan keteduhan dan memblokir angin. Di iklim dingin yang lebih dingin, merancang bangunan di belahan bumi utara dengan jendela yang menghadap selatan dan merancang bangunan di belahan bumi selatan dengan jendela yang menghadap utara, dapat meningkatkan jumlah sinar matahari (yang merupakan energi panas) yang memasuki gedung, meminimalkan penggunaan energi, dengan memaksimalkan pemanas pasif surya. Desain bangunan ketat, termasuk jendela hemat energi, pintu yang tertutup dengan baik, dan tambahan insulasi termal dinding bawah tanah, lempengan, dan fondasi dapat mengurangi kehilangan panas sebesar 25 hingga 50 persen.
Atap rumah gelap dapat menjadi 39 °C (70 °F) lebih panas dari permukaan putih yang paling reflektif. Mereka mengirimkan beberapa tambahan panas di dalam gedung. Studi di AS telah menunjukkan bahwa atap berwarna ringan menghasilkan 40 persen energi lebih sedikit untuk pendinginan dari bangunan dengan atap gelap Sistem atap putih menyimpan lebih banyak energi dalam iklim yang lebih cerah. Sistem pemanas dengan teknologi yang canggih dan sistem pendingin dapat mengurangi konsumsi energi dan meningkatkan kenyamanan orang-orang di dalam gedung.
Penempatan jendela dan skylight yang tepat serta penggunaan fitur arsitektur yang merefleksikan cahaya ke dalam bangunan dapat mengurangi kebutuhan pencahayaan buatan. Peningkatan penggunaan pencahayaan alami telah ditunjukkan oleh salah satu penelitian untuk meningkatkan produktivitas di sekolah-sekolah dan kantor-kantor. Lampu neon Kompak menggunakan dua-pertiga energi lebih sedikit dan dapat berlangsung 6 sampai 10 kali lebih lama dari lampu pijar. Lampu neon yang lebih baru menghasilkan cahaya alami, dan sebagian besar memiliki biaya yang efektif, walaupun biaya awal yang lebih tinggi, dengan periode pengembalian yang lebih rendah seperti beberapa bulan.
Desain bangunan efisiensi yang efektif dapat mencakup penggunaan biaya rendah Infra Merah Pasif (PIRs) untuk mematikan lampu ketika tidak ada yang memakai ruangan atau area tersebut, contohnya seperti toilet, koridor atau bahkan area kantor. Selain itu, tingkat lux dapat dipantau dengan menggunakan daylight sensor dihubungkan ke gedung skema pencahayaan untuk beralih on/off atau meredupkan pencahayaan untuk pra-didefinisikan tingkat untuk memperhitungkan cahaya alami dan dengan demikian mengurangi konsumsi. Building Management Systems (BMS) link semua ini bersama-sama dalam satu terpusat komputer untuk mengontrol seluruh bangunan penerangan dan kebutuhan daya.
Dalam sebuah analisis yang mengintegrasikan perumahan bottom-up simulasi dengan ekonomi yang multi-sektor, model ini telah menunjukkan bahwa variabel keuntungan panas yang disebabkan oleh isolasi dan pendingin efisiensi dapat memiliki beban pergeseran efek yang tidak seragam pada beban listrik. Penelitian ini juga menyoroti dampak dari rumah tangga yang lebih tinggi efisiensi pada pembangkit listrik kapasitas pilihan yang dibuat oleh sektor listrik.
Pilihan yang ruang pemanas atau pendingin teknologi untuk digunakan dalam bangunan dapat memiliki dampak yang signifikan pada penggunaan energi dan efisiensi. Misalnya, menggantikan yang lebih tua 50% efisien natural gas tungku dengan yang baru 95% efisien secara dramatis akan mengurangi penggunaan energi, emisi karbon, dan musim dingin alam tagihan gas. Tanah sumber panas pompa dapat menjadi lebih hemat energi dan hemat biaya. Sistem ini menggunakan pompa dan kompresor untuk memindahkan cairan refrigerant di sekitar siklus termodinamika dalam rangka untuk "pompa" terhadap panas alami yang mengalir dari panas ke dingin, untuk mentransfer panas ke dalam bangunan dari thermal besar waduk yang terkandung dalam sekitar tanah. Hasil akhirnya adalah bahwa pompa panas biasanya menggunakan empat kali lebih sedikit energi listrik untuk memberikan jumlah yang setara dengan panas dari listrik langsung pemanas tidak. Keuntungan lain dari sebuah pompa panas sumber tanah adalah bahwa hal itu dapat dibalik di musim panas dan beroperasi untuk mendinginkan udara dengan mentransfer panas dari bangunan ke tanah. Kelemahan dari pompa panas sumber tanah lebih tinggi biaya modal awal, tapi ini biasanya diperoleh kembali dalam waktu lima sampai sepuluh tahun sebagai hasil dari energi yang lebih rendah digunakan.
Smart meter perlahan-lahan diadopsi oleh sektor komersial untuk sorot untuk staf dan pengawasan internal keperluan bangunan penggunaan energi yang dinamis rapi format. Penggunaan Kualitas Daya Analisis yang dapat diperkenalkan ke sebuah bangunan yang ada untuk menilai penggunaan, distorsi harmonik, puncak, membengkak dan interupsi antara lain untuk akhirnya membuat bangunan menjadi lebih hemat energi. Sering seperti meter berkomunikasi dengan menggunakan jaringan sensor nirkabel.
Green Building XML (gbXML) adalah muncul skema, bagian dari Building Information Modeling usaha, berfokus pada desain bangunan hijau dan operasi. gbXML digunakan sebagai input dalam beberapa energi simulasi mesin. Tetapi dengan perkembangan teknologi komputer modern, sejumlah besar energi bangunan simulasi alat-alat yang tersedia di pasar. Ketika memilih alat simulasi untuk digunakan dalam proyek, pengguna harus mempertimbangkan alat akurasi dan keandalan, mengingat bangunan informasi yang mereka miliki di tangan, yang akan berfungsi sebagai masukan untuk alat. Yezioro, Dong dan Leite dikembangkan kecerdasan buatan pendekatan terhadap penilaian kinerja bangunan hasil simulasi dan menemukan bahwa lebih rinci alat simulasi memiliki yang terbaik simulasi kinerja dalam hal pemanasan dan pendinginan konsumsi listrik hanya 3% dari mean absolute error.
Leadership in Energy and Environmental Design (LEED) adalah sistem penilaian yang diselenggarakan oleh US Green Building Council (USGBC) untuk mempromosikan tanggung jawab lingkungan dalam desain bangunan. Mereka saat ini menawarkan empat tingkat sertifikasi bagi bangunan yang sudah ada (LEED-EBOM) dan konstruksi baru (LEED-NC) yang didasarkan pada suatu bangunan sesuai dengan kriteria sebagai berikut: Lokasi yang Berkesinambungan, Efisiensi Air, Energi dan Suasana, Bahan dan sumber Daya, Kualitas Lingkungan Indoor, dan Inovasi dalam Desain. Pada tahun 2013, USGBC dikembangkan LEED Dinamis Plakat, alat untuk melacak kinerja bangunan terhadap LEED metrik dan jalur potensial untuk sertifikasi ulang. Tahun berikutnya, dewan berkolaborasi dengan Honeywell untuk menarik data pada penggunaan energi dan air, serta kualitas udara dalam ruangan dari BAS untuk secara otomatis memperbarui plak, menyediakan dekat real-time melihat kinerja. Yang USGBC kantor di Washington, D. c. adalah salah satu bangunan pertama untuk fitur live-update LEED Dinamis Plak.
Sebuah mendalam energi retrofit adalah pembangunan keseluruhan analisis dan konstruksi proses yang digunakan untuk mencapai jauh lebih besar penghematan energi dibandingkan energi retrofits. Dalam retrofits energi dapat diterapkan untuk perumahan dan non-perumahan ("komersial") bangunan. Dalam energi retrofit biasanya menghasilkan penghematan energi sebesar 30 persen atau lebih, mungkin yang tersebar di beberapa tahun terakhir, dan secara signifikan dapat meningkatkan nilai bangunan. The Empire State Building telah mengalami mendalam energi retrofit proses itu selesai pada 2013. Tim proyek, yang terdiri dari perwakilan Johnson Controls, Rocky Mountain Institute, Clinton Climate Initiative, dan Jones Lang LaSalle akan mencapai tahunan penggunaan energi pengurangan 38% dan $4,4 juta. misalnya, 6.500 jendela remanufactured di lokasi yang menjadi superwindows yang memblokir panas tapi lulus cahaya. Ac biaya operasi pada hari-hari panas berkurang dan ini disimpan $17 juta dari proyek ini adalah biaya modal segera, sebagian dana lainnya perkuatan. Menerima emas Leadership in Energy and Environmental Design (LEED) rating pada bulan September 2011, Empire State Building adalah gedung tertinggi di LEED bersertifikat bangunan di Amerika Serikat. The Indianapolis Kota-County Bangunan baru-baru ini menjalani mendalam energi retrofit proses yang telah dicapai tahunan pengurangan energi dari 46% dan $750,000 tahunan hemat energi.
Retrofits energi, termasuk yang mendalam, dan jenis lain yang dilakukan dalam perumahan, komersial atau industri lokasi yang umumnya didukung melalui berbagai bentuk pembiayaan atau insentif. Insentif termasuk pra-dikemas rabat di mana pembeli/pengguna bahkan mungkin tidak menyadari bahwa barang yang digunakan telah rebated atau "down". "Hulu" atau "Midstream" beli surut yang umum untuk produk lampu hemat. Lainnya rabat yang lebih tegas dan transparan kepada pengguna akhir melalui penggunaan aplikasi formal. Selain potongan harga, yang dapat ditawarkan melalui pemerintah atau program utilitas, pemerintah kadang-kadang menawarkan insentif pajak untuk proyek-proyek efisiensi energi. Beberapa entitas yang menawarkan rebate dan pembayaran bimbingan dan fasilitasi layanan yang memungkinkan energi penggunaan akhir pelanggan memanfaatkan rebate dan program insentif.
Untuk mengevaluasi ekonomi kesehatan investasi efisiensi energi di gedung-gedung, analisis efektivitas biaya atau CEA dapat digunakan. CEA perhitungan akan menghasilkan nilai energi yang disimpan, kadang-kadang disebut negawatts, dalam $/kWh. Energi dalam perhitungan seperti itu adalah virtual dalam arti bahwa hal itu tidak pernah dikonsumsi melainkan disimpan karena beberapa investasi efisiensi energi yang sedang dibuat. Dengan demikian CEA memungkinkan membandingkan harga negawatts dengan harga energi seperti listrik dari grid atau termurah alternatif terbarukan. Manfaat dari CEA pendekatan dalam sistem energi adalah bahwa hal itu untuk menghindari kebutuhan untuk menebak masa depan harga energi untuk keperluan perhitungan, sehingga menghilangkan sumber utama ketidakpastian dalam penilaian investasi efisiensi energi.
Konservasi Energi
Konservasi energi adalah lebih luas dari efisiensi energi termasuk upaya aktif untuk mengurangi konsumsi energi, misalnya melalui perubahan perilaku, selain itu untuk menggunakan energi lebih efisien. Contoh dari konservasi tanpa peningkatan efisiensi pemanas ruangan kurang di musim dingin, dengan menggunakan mobil kurang, udara-pengeringan pakaian anda daripada menggunakan mesin pengering, atau mengaktifkan mode hemat energi pada komputer. Seperti dengan definisi lain, batas antara penggunaan energi yang efisien dan konservasi energi bisa kabur, tapi keduanya penting di lingkungan dan hal ekonomi. hal Ini terutama terjadi ketika tindakan yang diarahkan pada penghematan bahan bakar fosil. konservasi Energi merupakan tantangan yang memerlukan kebijakan program, pengembangan teknologi, dan perubahan perilaku untuk pergi tangan di tangan. Banyak energi perantara organisasi, misalnya pemerintah atau organisasi non-pemerintah lokal, regional, maupun tingkat nasional, bekerja pada sering didanai publik program-program atau proyek-proyek untuk memenuhi tantangan ini. Psikolog juga telah terlibat dengan masalah konservasi energi dan telah memberikan pedoman untuk mewujudkan perubahan perilaku untuk mengurangi konsumsi energi saat mengambil teknologi dan kebijakan pertimbangan ke rekening.
Laboratorium Energi Terbarukan Nasional memelihara sebuah daftar lengkap dari aplikasi yang berguna untuk efisiensi energi.
Properti komersial manajer yang merencanakan dan mengelola proyek-proyek efisiensi energi umumnya menggunakan platform perangkat lunak untuk melakukan audit energi dan untuk berkolaborasi dengan kontraktor untuk memahami berbagai opsi mereka. The Department of Energy (DOE) perangkat Lunak Direktori Diarsipkan 2013-06-07 di Wayback Machine. menjelaskan EnergyActio perangkat lunak berbasis cloud platform yang dirancang untuk tujuan ini.
Energi Berkelanjutan
Efisiensi energi dan energi terbarukan dikatakan "dua pilar" yang berkelanjutan dengan kebijakan energi. Kedua strategi harus dikembangkan secara bersamaan dalam rangka untuk menstabilkan dan mengurangi emisi karbon dioksida. Penggunaan energi yang efisien adalah penting untuk memperlambat pertumbuhan permintaan energi sehingga meningkatnya energi bersih persediaan dapat membuat luka mendalam dalam penggunaan bahan bakar fosil. Jika penggunaan energi yang tumbuh terlalu cepat, pengembangan energi terbarukan akan mengejar surut target. Demikian juga, kecuali energi bersih pasokan datang online dengan cepat, melambatnya pertumbuhan permintaan hanya akan mulai mengurangi total emisi karbon; pengurangan kadar karbon sumber energi juga diperlukan. Energi berkelanjutan ekonomi sehingga memerlukan komitmen utama untuk efisiensi dan energi terbarukan.
Efek Rebound
Jika permintaan untuk layanan energi tetap konstan, meningkatkan efisiensi energi akan mengurangi konsumsi energi dan emisi karbon. Namun, banyak peningkatan efisiensi tidak mengurangi konsumsi energi dengan jumlah yang diperkirakan oleh sederhana model rekayasa. Hal ini karena mereka membuat layanan energi yang lebih murah, sehingga konsumsi jasa tersebut meningkat. Misalnya, sejak efisien bahan bakar kendaraan membuat perjalanan lebih murah, konsumen dapat memilih untuk berkendara lebih jauh, sehingga mengimbangi beberapa potensi penghematan energi. Demikian pula, sebuah analisis sejarah teknologi peningkatan efisiensi telah secara meyakinkan menunjukkan bahwa perbaikan efisiensi energi yang hampir selalu melampaui pertumbuhan ekonomi, yang mengakibatkan kenaikan bersih dalam penggunaan sumber daya dan terkait polusi. Ini adalah contoh langsung efek rebound.
Perkiraan ukuran dari efek rebound berkisar dari kira-kira 5% sampai 40%. efek rebound kemungkinan untuk menjadi kurang dari 30% di tingkat rumah tangga dan mungkin lebih dekat dengan 10% untuk transportasi. efek rebound dari 30% menyiratkan bahwa perbaikan dalam efisiensi energi harus mencapai 70% pengurangan konsumsi energi diproyeksikan dengan menggunakan model rekayasa. Efek rebound mungkin sangat besar untuk penerangan, karena berbeda dengan tugas-tugas seperti mengangkut secara efektif tidak ada batas atas pada seberapa banyak cahaya bisa dianggap berguna. Pada kenyataannya, tampak bahwa pencahayaan telah menyumbang sekitar 0,7% dari PDB di banyak masyarakat dan ratusan tahun, menyiratkan efek rebound dari 100%.
Sumber Artikel: id.wikipedia.org
Facilities Engineering and Energy Management
Dipublikasikan oleh Muhammad Farhan Fadhil pada 03 Maret 2022
Dalam fisika, energi adalah properti fisika dari suatu objek, dapat berpindah melalui interaksi fundamental, yang dapat diubah bentuknya namun tak dapat diciptakan maupun dimusnahkan. Joule adalah satuan SI untuk energi, diambil dari jumlah yang diberikan pada suatu objek (melalui kerja mekanik) dengan memindahkannya sejauh 1 meter dengan gaya 1 newton.
Kerja dan panas adalah 2 contoh proses atau mekanisme yang dapat memindahkan sejumlah energi. Hukum kedua termodinamika membatasi jumlah kerja yang didapat melalui proses pemanasan-beberapa di antaranya akan hilang sebagai panas terbuang. Jumlah maksimum yang dapat digunakan untuk kerja disebut energi tersedia. Sistem seperti mesin dan benda hidup membutuhkan energi tersedia, tidak hanya sembarang energi. Energi mekanik dan bentuk-bentuk energi lainnya dapat berpindah langsung ke bentuk energi panas tanpa batasan tertentu.
Ada berbagai macam bentuk-bentuk energi, tetapi semua tipe energi ini harus memenuhi berbagai kondisi seperti dapat diubah ke bentuk energi lainnya, mematuhi hukum konservasi energi, dan menyebabkan perubahan pada benda bermassa yang dikenai energi tersebut. Bentuk energi yang umum di antaranya energi kinetik dari benda bergerak, energi radiasi dari cahaya dan radiasi elektromagnetik, energi potensial yang tersimpan dalam sebuah benda karena posisinya seperti medan gravitasi, medan listrik atau medan magnet, dan energi panas yang terdiri dari energi potensial dan kinetik mikroskopik dari gerakan-gerakan partikel tak beraturan. Beberapa bentuk spesifik dari energi potensial adalah energi elastis yang disebabkan dari pemanjangan atau deformasi benda padat dan energi kimia seperti pelepasan panas ketika bahan bakar terbakar. Setiap benda yang memiliki massa ketika diam, memiliki massa diam atau sama dengan energi diam, meski tidak dijelaskan dalam fenomena sehari-hari di fisika klasik.
Menurut neraca massa-energi, semua bentuk energi membutuhkan massa. Contohnya, menambahkan 25 kilowatt-jam (90 megajoule) energi pada objek akan meningkatkan massanya sebanyak 1 mikrogram; jika ada timbangan yang sebegitu sensitif maka penambahan massa ini bisa terlihat. Matahari mengubah energi potensial nuklir menjadi bentuk energi lainnya; total massanya akan berubah ketika energi terlepas ke sekelilingnya terutama dalam bentuk energi radiasi.
Meskipun energi dapat berubah bentuk, tetapi hukum kekekalan energi menyatakan bahwa total energi pada sebuah sistem hanya berubah jika energi berpindah masuk atau keluar dari sistem. Hal ini berarti tidak mungkin menciptakan atau memusnahkan energi. Total energi dari sebuah sistem dapat dihitung dengan menambahkan semua bentuk energi dalam sistem tersebut. Contoh perpindahan dan transformasi energi adalah pembangkitan listrik, reaksi kimia, atau menaikkan benda.
Organisme hidup juga membutuhkan energi tersedia untuk tetap hidup; manusia misalnya, membutuhkan energi dari makanan beserta oksigen untuk memetabolismenya. Peradaban membutuhkan pasokan energi untuk berbagai kegiatan; sumber energi seperti bahan bakar fosil merupakan topik penting dalam ekonomi dan politik. Iklim dan ekosistem bumi juga dijalankan oleh energi radiasi yang didapat dari matahari (juga energi geotermal yang didapat dari dalam bumi.
Bentuk-bentuk energi
Sejarah
Kata energi berasal dari bahasa Yunani Kuno: ἐνέργεια, yang kemungkinan muncul pertama kali dalam karya Aristoteles pada abad ke-4 SM. Kebalikan dengan definisi modern, energeia adalah konsep filosofis kualitatif yang sangat luas.
Pada akhir abad ke-17, Gottfried Leibniz mengusulkan ide bahasa Latin: vis viva, atau gaya hidup, yang didefinisikan sebagai perkalian antara massa objek dengan kuadrat kecepatannya; ia percaya bahwa total vis viva adalah kekal. Untuk memperhitungkan perlambatan akibat friksi/gesekan, Leibniz membuat teori bahwa energi termal terdiri dari gerak acak dari bagian pembentuk zat, meski pada akhirnya hal ini membutuhkan waktu lebih dari satu abad untuk diterima secara umum. Analogi modern dari besaran ini (energi kinetik) hanya berbeda pada faktor pengali setengah.
Pada tahun 1807, Thomas Young kemungkinan adalah orang pertama yang menggunakan istilah "energi" daripada vis viva. Gustave-Gaspard Coriolis menjelaskan "energi kinetik" pada tahun 1829, dan William Rankine memunculkan istilah "energi potensial" tahun 1853. Hukum kekekalan energi juga pertama kali dipostulatkan pada awal abad ke-19, dan berlaku pada semua sistem terisolasi. Pernah dipertentangkan apakah panas adalah substansi fisika atau bukan, atau hanyalah besaran fisika seperti momentum. Pada tahun 1845 James Prescott Joule menemukan hubungan antara kerja mekanik dengan munculnya panas.
Pengembangan ini memunculkan teori kekekalan energi, dirumuskan formal oleh William Thomson (Lord Kelvin) dalam termodinamika. Termodinamika memberikan penjelasan bagi pengembangan proses-proses kimia oleh Rudolf Clausius, Josiah Willard Gibbs, dan Walther Nernst. Clausius juga mengemukakan konsep entropi dan Jožef Stefan mengenalkan hukum energi radiasi. Menurut teorema Noether, hukum kekekalan energi adalah akibat daripada hukum fisika tidak berubah terhadap waktu.
Satuan
Energi dinyatakan dalam satu joule (J). Penggunaan satuan ini dinamakan untuk menghormati jasa dari James Prescott Joule atas percobaannya dalam persamaan mekanik panas. Dalam istilah yang lebih mendasar 1 joule sama dengan 1 newton-meter dan, dalam istilah satuan pokok SI, 1 J sama dengan 1 kg m2 s−2.
Penggunaan dalam sains
Dalam mekanika klasik, energi yang properti yang berguna secara konsep dan matematis. Beberapa perumusan mekanika telah dikembangkan menggunakan energi sebagai konsep utama.
Kerja, sebuah bentuk energi, adalah gaya dikali jarak.
Disini dikatakan bahwa kerja W sama dengan integral garis dari gaya F sepanjang lintasan C; untuk lebih detailnya lihat pada artikel kerja mekanik. Kerja dan energi adalah tergantung kerangka.
Total energi dalam sistem terkadang disebut Hamiltonian, diambil dari nama William Rowan Hamilton. Persamaan gerak klasik dapat ditulis dalam bentuk Hamiltonian, meski untuk sistem yang sangat kompleks dan abstrak. Persamaan klasik ini memiliki analogi langsungnya dalam mekanika kuantum nonrelativistik.
Konsep lain berkaitan dengan energi disebut sebagai Lagrangian, diambil dari nama Joseph-Louis Lagrange. Formulasi ini sama pentingnya dengan Hamiltonian, dan keduanya dapat digunakan untuk menurunkan atau diturunkan dari persamaan gerak. Konsep ini ditemukan dalam konteks mekanika klasik, tetapi berguna secara umum untuk fisika modern. Konsep Lagrangian didefinisikan sebagai energi kinetik minus energi potensial. Umumnya, konsep Lagrange secara matematis lebih mudah digunakan daripada Hamiltonian untuk sistem non-konservatif (seperti sistem dengan gaya gesek).
Dalam bidang biologi, energi berperan pada seluruh tingkat sistem biologis, dari biosfer sampai ke makhluk hidup terkecil.
Biosfer yaitu bagian atau lapisan dari bumi di mana terdapat kehidupan. Cakupan biosfer yaitu mulai dari sistem akar paling dalam pohon-pohon yang ada di bumi ke ekosistem bersuasana gelap di palung terdalam yang ada di samudra, hutan hutan yang dalam dan puncak gunung-gunung tinggi. Pergerakan energi terjadi di biosfer. Energi yang masuk ke biosfer berasal dari matahari. Ada banyak jenis energi yang dipancarkan matahari, namun yang diterima oleh bumi adalah sebagian kecil energi tersebut. Energi yang berasal dari matahari yang biasa digunakan oleh makhluk hidup adalah energi panas dan cahaya. Energi panas penting bagi bumi agar tetap menjadi biosfer sebagaimana energi panas dapat mempertahankan suhu bumi agar optimal bagi kehidupan. Cahaya diperlukan agar makhluk hidup dapat melihat. Selain itu, cahaya juga dimanfaatkan oleh tumbuhan untuk membuat gula dan pati sebagai nutrisi bagi makhluk hidup lainnya.
Pada makhluk hidup, energi berperan dalam pertumbuhan dan perkembangan sel atau organel dari suatu organisme. Pada dasarnya, setiap aktivitas yang dilakukan oleh makhluk hidup memerlukan energi. Proses sintesis molekul, penguraian molekul, serta pemindahan molekul dari satu tempat ke tempat lain juga memerlukan energi.
Perpindahan
Kerja didefinisikan sebagai "integral batas" gaya F sejauh s:
Persamaan di atas mengatakan bahwa kerja W sama dengan integral dari perkalian dot antara gaya F yang bekerja benda dan posisi benda mendekati nol S
Jenis
Energi kinetik adalah bagian energi yang berhubungan dengan gerakan suatu benda.
Persamaan di atas menyatakan bahwa energi kinetik Ek sama dengan integral dari perkalian dot kecepatan v sebuah benda dan momentum benda mendekati nol p
Berlawanan dengan energi kinetik, yang adalah energi dari sebuah sistem dikarenakan gerakannya, atau gerakan internal dari partikelnya, energi potensial dari sebuah sistem adalah energi yang dihubungkan dengan konfigurasi ruang dari komponen-komponennya dan interaksi mereka satu sama lain. Jumlah partikel yang mengeluarkan gaya satu sama lain secara otomatis membentuk sebuah sistem dengan energi potensial. Gaya-gaya tersebut, contohnya, dapat timbul dari interaksi elektrostatik (lihat hukum Coulomb), atau gravitasi.
Energi internal adalah energi kinetik dihubungkan dengan gerakan molekul-molekul, dan energi potensial yang dihubungkan dengan getaran rotasi dan energi listrik dari atom-atom di dalam molekul. Energi internal seperti energi adalah sebuah fungsi keadaan yang dapat dihitung dalam sebuah sistem.
Energi listrik merupakan energi yang berkaitan dengan perhitungan arus elektron yang dinyatakan dalam satuan Watt-jam atau kiloWatt-jam. Perpindahan energi listrik terjadi dalam bentuk aliran elektron melalui konduktor jenis tertentu. Energi listrik dapat disimpan sebagai energi medan elektrostatik melalui medan listrik yang dihasilkan oleh terkumpulnya muatan elektron pada pelat-pelat kapasitor. Total energi medan listrik ditambah dengan energi medan elektromagnetik, sama dengan energi yang berkaitan dengan medan magnet yang timbul akibat aliran elektron melalui kumparan induksi.
Bentuk perubahan energi mekanik adalah kerja. Energi mekanik tersimpan dalam bentuk energi potensial atau energi kinetik.
Energi elektromagnetik adalah bentuk energi yang berkaitan dengan radiasi elektromagnetik. Energi radiasi dinyatakan dalam satuan elektron-Volt (eV) atau mega elektron-Volt (MeV). Radiasi elektromagnetik tidak berkaitan dengan massa dan merupakan bentuk energi murni. Apabila panjang gelombangnya semakin pendek dan frekuensinya semakin tinggi, maka energi transmisi semakin besar atau semakin energetik. Sumber radiasi atau panjang gelombang radiasi elektromagnetik dibagi atas beberapa kelas. Radiasi sinar gamma (y) merupakan jenis radiasi yang paling energetik dari energi elektromagnetik. Sinar X dihasilkan oleh keluar orbitnya elektron. Radiasi termal adalah radiasi elektromagnetik timbul akibat getaran atom. Kelompok energi elektromagnetik ini termasuk radiasi ultraviolet atau radiasi temperatur tinggi, radiasi tembus pandang dan kelompok radiasi temperatur rendah atau sinar inframerah. Jenis radiasi elektromagnetik yang lainnya adalah radiasi gelombang milimeter dan gelombang mikro yang digunakan untuk radar serta microwave-cookers.
Energi kimia merupakan hasil interaksi elektron antara dua atau lebih atom/molekul yang mengalami pencampuran. Reaksi kimia ini menghasilkan senyawa kimia yang stabil. Energi kimia hanya dapat terjadi dalam bentuk energi tersimpan. Bila energi dilepas dalam suatu reaksi maka reaksinya disebut reaksi eksotermis. Satuan energi kimia dinyatakan dalam kiloJoule, satuan panas Britania, atau kiloKalori. Bila energi dalam reaksi kimia terserap maka disebut dengan reaksi endotermis. Reaksi kimia eksotermis adalah sumber energi bahan bakar yang sangat penting bagi manusia dalam proses pembakaran yang melibatkan oksidasi dari bahan bakar fosil.
Energi nuklir merupakan energi dalam bentuk tersimpan yang dapat dilepas. Pembentukan energi nuklir merupakan akibat dari interaksi partikel dengan atau dalam inti atom. Energi ini dilepas sebagai hasil usaha partikel-partikel untuk memperoleh kondisi yang lebih stabil. Satuan energi nuklir adalah juta elektron reaksi. Peluruhan radioaktif, fisi dan fusi terjadi selama reaksi nuklir berlangsung .
Energi termal adalah bentuk energi dasar yang dapat dikonversi secara penuh menjadi energi panas. Pengubahan energi termal ke energi lain dibatasi oleh Hukum Termodinamika Kedua. Bentuk transisi dari energi termal dapat pula dalam bentuk energi tersimpan sebagai kalor laten atau kalor sensibel yang berupa entalpi.
Transformasi
Transformasi energi atau konversi energi merupakan proses pengubahan energi dari satu bentuk energi ke suatu bentuk energi yang lain atau berbeda. Prinsip transformasi energi dimanfaatkan oleh manusia menjadi suatu sistem yang mampu menghasilkan usaha. Setiap proses transformasi energi pasti mengalami kerugian. Setiap kerugian dalam transformasi energi dipengaruhi oleh lingkungan. Ini disebabkan oleh sifat alami energi yang cenderung dapat tersebar ke mana-mana. Kegiatan konversi energi yang terencana wajib memiliki beberapa prinsip umum. Validitas dari prinsipnya harus berupa bukti empiris sehingga dapat digunakan oleh pemakai akhir energi. Prinsip utama dalam transformasi energi adalah penghematan energi, pengurangan rugi energi dan peningkatan efisiensi energi yang dikelola melalui manajemen energi. Transformasi energi dilakukan dengan memperhatikan manajemen energi tanpa mempertimbangkan kondisi keragaman teknologi dari pemakai energi di bagian akhir siklus energi. Proses transformasi energi dapat dilakukan dengan menggunakan mesin konversi energi. Pengubahan energinya dapat dalam energi mekanis, energi listrik, energi kimia, energi nuklir dan energi termal.
Manajemen
Manajemen energi selalu berkaitan dengan transformasi energi. Prinsip umum manajemen energi dan transformasi energi adalah sama. Masing-masing harus menggunakan prinsip yang bersifat umum dan telah memiliki tingkat keabsahan yang dapat ditunjukkan melalui bukti empiris. Manajemen energi tidak dipengaruhi oleh tingkat keragaman pengguna akhir energi. Kondisi ini berlaku untuk segi standar teknis, ekonomi maupun lingkungan. Konversi energi di dalam kajian manajemen energi berarti bahwa setiap proses perubahan energi harus dapat dibuat mengalami kerugian energi dengan jumlah yang sesedikit mungkin. Manajemen energi dalam hal ini berperan dalam meningkatkan efisiensi energi yang dipengaruhi oleh adanya kegiatan konversi energi. Manajemen energi yang efektif tercapai melalui tahap pengumpulan dan penyampaian informasi. Tahap pengumpulan informasi meliputi analisis data sejarah energi, audit energi, akuntansi, analisis teknik serta pembuatan proposal investasi dengan studi kelayakan sebagai acuannya. Sementara tahap penyampaian informasi meliputi pelatihandan pemberian informasi kepada personel yang bekerja di bidang energi. Program manajemen energi disesuaikan dengan kemampuan anggaran perusahaan dalam pembiayaan energi. Indeks kinerja utama pada energi-energi yang penting dkenali untuk keperluan penghematan energi. Pekerjaan manajemen energi ini dapat dilakukan oleh konsultan dai pihak internal maupun eksternal.
Sumber Artikel: id.wikipedia.org
Facilities Engineering and Energy Management
Dipublikasikan oleh Muhammad Farhan Fadhil pada 03 Maret 2022
Penghematan energi adalah tindakan mengurangi jumlah penggunaan energi. Menghemat energi berarti tidak menggunakan energi listrik untuk suatu hal yang tidak berguna. Penghematan energi dapat dicapai dengan penggunaan energi secara efisien di mana manfaat yang sama diperoleh dengan menggunakan energi lebih sedikit, ataupun dengan mengurangi konsumsi dan kegiatan yang menggunakan energi. Penghematan energi dapat menyebabkan berkurangnya biaya, serta meningkatnya nilai lingkungan, keamanan negara, keamanan pribadi, serta kenyamanan. Organisasi-organisasi serta perseorangan dapat menghemat biaya dengan melakukan penghematan energi, sedangkan pengguna komersial dan industri dapat meningkatkan efisiensi dan keuntungan dengan melakukan penghematan energi.
Sedangkan konservasi energi adalah penggunaan energi dengan efisiensi dan rasional tanpa mengurangi penggunaan energi yang memang benar-benar diperlukan.
Penghematan energi adalah unsur yang penting dari sebuah kebijakan energi. Penghematan energi menurunkan konsumsi energi dan permintaan energi per kapita, sehingga dapat menutup meningkatnya kebutuhan energi akibat pertumbuhan populasi. Hal ini mengurangi naiknya biaya energi, dan dapat mengurangi kebutuhan pembangkit energi atau impor energi. Berkurangnya permintaan energi dapat memberikan fleksibilitas dalam memilih metode produksi energi.
Selain itu, dengan mengurangi emisi, penghematan energi merupakan bagian penting dari mencegah atau mengurangi perubahan iklim. Penghematan energi juga memudahkan digantinya sumber-sumber tak dapat diperbaharui dengan sumber-sumber yang dapat diperbaharui. Penghematan energi sering merupakan cara paling ekonomis dalam menghadapi kekurangan energi, dan merupakan cara yang lebih ramah lingkungan dibandingkan dengan meningkatkan produksi energi.
Kegunaan dan Penghematan Energi Listrik
Energi listrik dalam jumlah besar dihasilkan oleh generator pembangkit listrik. Generator itu digerakkan menggunakan tenaga air, uap, nuklir, matahari, dan lain-lain.
Di Indonesia, untuk menggerakkan generator lebih banyak menggunakan energi air sehingga disebut Pembangkit Listrik Tenaga Air (PLTA). Misalnya, PLTA Jatiluhur. Energi listrik yang dihasilkan oleh pusat pembangkit listrik, kemudian disalurkan ke gardu, ke rumah, pabrik, dan gedung-gedung. Alat-alat rumah tangga banyak yang menggunakan energi listrik. Misalnya, televisi, radio, lemari es, mesin cuci, dan kipas angin. Adapun untuk daerah-daerah terpencil masyarakat menggunakan aki untuk menyalakan televisi dan radio.
Pernahkah kamu berpikir, bagaimana jika energi listrik di rumah kamu padam? Pasti aktivitas kamu ada yang terganggu. Oleh karena itu, kamu harus berhati-hati dalam menggunakan listrik. Untuk menjaga keselamatan, kamu harus memerhatikan beberapa hal berikut.
Selain energi yang bersumber dari listrik, manusia menggunakan sumber energi bentuk lain. Misalnya, minyak tanah, gas, bensin, dan solar. Minyak tanah dan gas digunakan untuk menyalakan kompor, sedangkan bensin dan solar digunakan untuk bahan bakar kendaraan bermotor. Kebutuhan energi listrik semakin meningkat dengan bertambahnya pembangunan perumahan, gedung-gedung, dan jalan-jalan. Untuk itu, kamu perlu menghemat energi listrik.
Energi alternatif untuk masa depan
Energi alternatif adalah semua sumber energi yang mampu menggantikan bahan bakar konvensional, seperti listrik, bensin, gas dan lain lain. Seiring perkembangan zaman, maka semakin banyak juga jenis sumber energi alternatif dan manfaatnya bagi kehidupan manusia terutama dalam pencegahan pemanasan global. Sumber energi alternatif tersebut adalah.
Sumber Artikel: id.wikipedia.org
Facilities Engineering and Energy Management
Dipublikasikan oleh Muhammad Farhan Fadhil pada 03 Maret 2022
Audit energi adalah proses penghematan energi yang dilakukan dengan mengadakan perhitungan konsumsi energi pada sebuah bangunan beserta cara menghematnya. Kegiatan audit energi merupakan langkah pertama dalam mengadakan efisiensi energi. Selama audit energi, proses pengumpulan dan analisis data yang diadakan bersamaan dengan kegiatan konservasi energi. Keharusan adanya tujuan dalam proses manajemen energi yang efektif menjadi landasan pengadaan audit energi. Audit energi menguraikan segala tindakan manajemen energi secara rinci. Lingkup kegiatannya meliputi pencatatan jenis energi dan jumlah energi yang digunakan di setiap tingkat proses manufaktur. Pencatatan dilakukan secara sistematis dan berkesinambungan. Kegiatan konservasi energi diadakan bersamaan selama proses pengumpulan data energi. Terdapat dua jenis tahap audit energi yang dilaksanakan secara berurutan yaitu audit energi awal dan audit energi rinci. Audit energi awal berkaitan dengan data pemakaian energi sementara audit energi terinci berkaitan dengan intensitas konsumsi energi.
Kegiatan
Kegiatan-kegiatan di dalam audit energi meliputi survei data sederhana hingga pengujian data yang sudah ada secara rinci. Hasil analisa data kemudian digunakan untuk memperoleh data baru dengan mengggabungkan data lama dengan uji coba pabrik secara khusus. Ukuran dan jenis fasilitas pabrik mempengaruhi lamanya waktu yang diperlukan dalam pelaksanaan suatu audit. Pelaksanaan audit energi juga ditentukan oleh tujuannya.
Jenis
Tahap-tahap
Audit energi dilakukan oleh auditor energi. Tahap paling awalnyaadalah pengenalan dengan manajemen perusahaan khususnya manajemen produksi. Setelahnya, auditor energi harus memahami mengenai pendekatan penghematan energi berdasarkan sudut pandang para pekerja yang menangani bidang energi. Kemudian, data mengenai sejarah penghematan energi dan rencana penghematan energi di masa depan harus dikumpulkan.
Dari data tersebut, auditor energi membuat membuat peta konsumsi energi perusahaan lalu dibuatkan kemungkinan penghematan energi melalui verifikasi. Pembuatan peta konsumsi energi didasari oleh pengukuran tambahan pada titik-titik simpul skema teknologi proses produksi perusahaan. Peta konsumsi energi dibuat dengan bantuan alat ukur portabel maupun alat ukur stasioner. Perhitungan dapat dilakukan jika dikretahui nilai dari daya nominal dan daya keluaran tahunan dari tiap peralatan yang memerlukan energi telah diketahui. Kemungkinan penghematan energi diperoleh melalui perbandingan konsumsi energi perusahaan dengan literatur khusus yang memuat informasi mengenai penghematan energi yang sesuai dengan jenis perusahaan.
Selanjutnya diadakan penilaian penghematan energi dan manfaat ekonomi dari penerapan berbagai tindakan yang dapat dipilih untuk diadakan. Dari pilihan-pilihan tersebut, diputuskan salah satunya sebagai program penghematan energi yang akan diterapkan. Pemilihan ini diutamakan dipilih dengan pertimbangan data teknis dan ekonomi. Tahap terakhir dari audit energi adalah melaksanakan program penghematan energi. Pada tahap ini, auditor energi tidak lagi dilibatkan sama sekali. Program dilaksanakan oleh pemasok dan produsen peralatan yang menyediakan pemakai energi. Auditor energi hanya berperan sebagai pengawas dan konsultan dalam program penghematan energi tersebut jika mengadakan kontrak dengan perusahaan.
Perlengkapan
Perlengkapan utama yang digunakan dalam kegiatan audit energi adalah alat ukur. Pemakaian alat ukur berlaku pada audit energi awal maupun audit energi terinci. Setiap alat ukur yang digunakan pada audit energi bersifat portabel karena pengukuran dilakukan pada tempat yang berbeda-beda dan terpisah. Alat ukur yang digunakan harus memiliki kemampuan untuk mengukur jenis-jenis satuan energi. Jenis alat ukur yang umum digunakan ialah tang amper dan multimeter. Besaran yang diukur utamanya termasuk besaran listrik antara lain tegangan listrik, arus listrik, faktor daya listrik, dan energi listrik.
Kegunaan
Kekurangan
Kelemahan audit energi adalah tidak dapat memberikan rekomendasi mengenai suatu investasi yang memiliki risiko tinggi atau nilai investasi yang terlalu besar. Audit energi hanya dapat memberikan suatu rekomendasi mengenai studi kelayakan yang berkaitan dengan peralatan dan cara kerjanya. Besarnya penghematan energi yang dapat diidentifikasi melalui audit energi juga tidak diketahui dengan pasti. Nilai penghematan biasanya mendekati jumlah yang hampir sama dengan nilai sebenarnya. Penghematan energi melalui audit energi awal berada pada kisaran 10%, sementara pada audit energi terinci dapat mencapai 20%. pada jangka menengah dan jangka panjang. Pabrik umumnya memperoleh penghematan energi melalui tindakan perawatan pada instalasi pabrik atau pada investasi dengan modal yang kecil.
Sumber Artikel: id.wikipedia.org
Facilities Engineering and Energy Management
Dipublikasikan oleh Muhammad Farhan Fadhil pada 03 Maret 2022
Manajemen energi adalah program terpadu yang direncanakan dan dilaksanakan secara sistematis untuk memanfaatkan sumber daya energi dan energi secara efektif dan efisien. Tujuan diadakannya manajemen energi adalah untuk penghematan energi dan penghematan biaya akibat kenaikan harga energi, kelangkaan sumber daya energi serta kesadaran akan dampak buruk dari eksploitasi berlebihan terhadap energi bagi lingkungan. Sejak dasawarsa 1970-an, manajemen industri telah menjadikan manajemen energi sebagai salah satu fungsi industri yang utama. Faktor yang menentukan tingkat kualitas manajemen energi meliputi rantai pasok, biaya produksi, kualitas energi dan keberlanjutan lingkungan produksi. Manajemen energi digunakan dalam proses transformasi energi dengan menerapkan prinsip umum yang memiliki keabsahan yang dapat dibuktikan kebenarannya. Faktor teknologi pemakai energi tidak diperhitungkan dalam manajemen energi. Prosedur manajemen energi yang efektif meliputi tahapan analisa data sejarah energi, audit energi dan akuntansi, analisis teknik dan studi kelayakan untuk proposal bisnis dan investasi, serta pelatihan dan pemberian informasi kepada personel pelaksana pekerjaan. Pelaksanaan manajemen energi dillakukan oleh konsultan internal atau konsultan eksternal dari suatu perusahaan. Manajemen energi dikelola sesuai dengan anggaran perusahaan bagi biaya energi serta sesuai dengan indeks kinerja ilmiah dari energi.
Sejarah
Masyarakat internasional mulai menyadari kemutlakan adanya permasalahan energi ketika krisis energi dimulai pada periode tahun 1980 hingga 1990 M. Pada periode ini, dunia memasuki era industri yang memberikan masalah lingkungan yang besar dan meningkatkan harga energi dunia. Penghematan energi menjadi suatu faktor yang penting dalam perancangan pabrik dan peralatannya. Pengelola industri mulai mempertimbangkan keberadaan energi bersama dengan pertimbangan pengembalian modal.
Bidang keilmuan
Manajemen energi mengacu kepada dua bidang keilmuan yaitu keteknikan dan ekonomi. Penngembangan strategi industri di dalam pabrik dan bangunan besar dipengaruhi oleh kedua bidang tersebut. Pendidikan tradisional mengenai manajemen industri khususnya mengkaji tentang mekanika dan termodinamika. Setelah teknologi informasi dan elektronika daya berkembang secara pesat, maka kajian manajemen energi dialihkan ke kelistrikan dan termodinamika. Para pekerja yang dipekerjakan dalam pengelolaan energi juga diberikan pelatihan yang sesuai dengan bidang manajemen energi.
Manajemen energi tidak menjadi bagian dari bidang ilmu manajemen, melainkan termasuk dalam bidang teknik energi. Bidang kajian di dalam manajemen energi dikhusukan pada yang lebih pengelolaan peralatan yang mengkonsumsi energi beserta dampak ekonominya terhadap bisnis, organisasi atau perusahaan. Kehadiran manajemen energi dipengaruhi oleh meningkatnya penggunaan energi pada peralatan-peralatan yang digunakan dalam proses produksi khususnya energi listrik dan bahan bakar. Selain itu, kehadiran manajemen energi cenderung meningkat seiring peningkatan efisiensi energi dalam pemakaian mesin atau sistem produksi.
Jenis
Manajemen energi pada bangunan gedung
Sistem manajemen energi pada bangunan gedung modern menentukan ketersediaan pelayanan di dalam gedung. Beberapa fasilitas gedung yang memanfaatkan konsep energi dalam perancangannya antara lain pendinginan ruangan, ventilasi, pencahayaan, hiburan, transportasi, dan keamanan. Pengelolaan eneegi di dalam gedung modern memanfaatkan sistem elektronik yang dikendalikan secara terpusat. Tujuan pemusatan pengendalian energi adalah untuk mengurangi pemakaian energi oleh pemakai gedung tetapi kualitas kerja tetap optimal.
Data pemakaian energi juga dimanfaatkan untuk mengelola dan menetapkan strategi operasional dan pemeliharaan bangunan gedung. Tiap peralatan yang mengonsumsi energi dikumpulkan informasinya secara spesifik, khususnya periode pemakaian dan jumlah energi yang digunakan setiap kali pemakaian. Manajemen energi yang baik akan menghemat pemakaian energi, Sebaliknya, manajemen energi yang buruk menyebabkan produktivitas energi menurun, biaya pemeliharaan meningkat dan kualitas lingkungan dalam gedung menjadi buruk.
Dalam manajemen energi pada bangunan gedung diperlukan integrasi antara beberapa sistem, pengaturan dan pengawasan. Integrasi sistem terjalin antara sistem pembangkit energi, sistem baterai pusat, sistem penyejuk udara, sistem pencahayaan serta sistem lift dan eskalator. Pada area umum, integrasi pengaturan terjalin antara pengaturan pencahayaan, sistem kontrol akses, pengawasan aktivitas manusia dan keamanan, dan sistem alarm kebakaran. Selain itu, ada pula suatu sistem pengukuran yang khusus mengumpulkan data mengenai konsumsi air, listrik dan energi. Manajemen energi pada bangunan gedung wajib meyediakan layanan peringatan, kecenderungan pemakaian energi, catatan dan laporannya serta profil pemakai dan peran manajemen energi.
Prosedur
Kebijakan
Kebijakan manajemen energi dibuat agar setiap pelaksananya dapat berperan aktif dalam mencapai tujuan manajemen energi. Penetapan kebijakan manajemen energi memberikan peluang yang lebih besar dalam pencapaian tujuan manajemen energi. Lingkup kebijakan manajemen energi meliputi pernyataan kebijakan dan strategi manajemen energi. Pernyataan kebijakan berisi pernyataan umum mengenai tujuan pelaksanaan manajemen energi. Sementara strategi manajemen berisi langkah-langkah pencapaian tujuannya.
Adanya kebijakan manajemen energi akan mempusatkan para pelaksananya pada satu kerangka berpikir yang tunggal dalam pencapaian tujuannya. Kebijakan ini juga membentuk program kerja yang sistemasi dan menunjukkan adanya komitmen terhadap manajemen energi. Penetapan kebijakan juga dijadikan sebagai bentuk pengawasan perubahan perilaku pelaksana manajemen enerfi serta menyediakan sumber daya yang memadai. Manfaat lain dari penetapan kebijakan manajemen energi adalah membangun kesadaran energi bagi para pelaksananya. Efektifitas pelaksanaan kebijakan manajemen energi ditentukan oleh tingkat integrasinya dengan sistem informasi, standar teknis, pemasaran dan manajemen keuangan.
Penerapan
Manajemen energi bertujuan untuk mengawasi penggunaan energi di dalam suatu organisasi atau perusahaan. Dalam pengawasannya dilibatkan berbagai disiplin ilmialh lainnya, antara lain keteknika, ekonomi, akuntansi, desain dan riset operasional serta teknologi sistem informasi manajemen. Manajemen energi dapat diterapkan untuk semua jenis perusahaan, industri maupun bangunan.
Hambatan
Manajemen energi dapat dikelola secara buruk jika pengelolanya kekurangan pengetahuan mengenai teknik manajemen energi. Buruknya manajemen energi juga dapat disebabkan oleh kurangnya tradisi yang kuat dalam investasi modal. Dampak yang ditimbulkan ialah pemborosan energi Di sisi lain, pabrik berukuran besar menggunakan energi dalam jumlah besar. Pabrik besar ini kemudian mengadakan penguatan pabrik dengan meningkatkan fasilitas proses produksi. Sementara itu, sektor industri dengan penggunaan energi yang tidak besar hanya melakukan investasi dengan pengembalian modal sesingkat mungkin. Pabrik berukuran kecil umumnya menunda modifikasi proses produksi dan hanya melakukan pemulihan panas dan pengurangan kerugian akibat biaya energi. Manajemen energi dengan kondisi tersebut menghasilkan perubahan strategi produksi yang drastis sehingga sulit terkendali.
Sumber Artikel: id.wikipedia.org